Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants.

نویسندگان

  • David L Shis
  • Matthew R Bennett
چکیده

The construction of synthetic gene circuits relies on our ability to engineer regulatory architectures that are orthogonal to the host's native regulatory pathways. However, as synthetic gene circuits become larger and more complicated, we are limited by the small number of parts, especially transcription factors, that work well in the context of the circuit. The current repertoire of transcription factors consists of a limited selection of activators and repressors, making the implementation of transcriptional logic a complicated and component-intensive process. To address this, we modified bacteriophage T7 RNA polymerase (T7 RNAP) to create a library of transcriptional AND gates for use in Escherichia coli by first splitting the protein and then mutating the DNA recognition domain of the C-terminal fragment to alter its promoter specificity. We first demonstrate that split T7 RNAP is active in vivo and compare it with full-length enzyme. We then create a library of mutant split T7 RNAPs that have a range of activities when used in combination with a complimentary set of altered T7-specific promoters. Finally, we assay the two-input function of both wild-type and mutant split T7 RNAPs and find that regulated expression of the N- and C-terminal fragments of the split T7 RNAPs creates AND logic in each case. This work demonstrates that mutant split T7 RNAP can be used as a transcriptional AND gate and introduces a unique library of components for use in synthetic gene circuits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthetic biology: the many facets of T7 RNA polymerase

S ynthetic gene circuits have become an invaluable tool for studying the design principles of native gene networks and facilitating new biotechnologies (Way et al, 2014). Synthetic biologists often strive to build circuits within a framework that enables their consistent and robust operation across a range of hosts and conditions. Currently, however, each circuit must be fastidiously tuned and ...

متن کامل

Digital logic circuits in yeast with CRISPR-dCas9 NOR gates

Natural genetic circuits enable cells to make sophisticated digital decisions. Building equally complex synthetic circuits in eukaryotes remains difficult, however, because commonly used components leak transcriptionally, do not arbitrarily interconnect or do not have digital responses. Here, we designed dCas9-Mxi1-based NOR gates in Saccharomyces cerevisiae that allow arbitrary connectivity an...

متن کامل

Multi-Input Regulation and Logic with T7 Promoters in Cells and Cell-Free Systems

Engineered gene circuits offer an opportunity to harness biological systems for biotechnological and biomedical applications. However, reliance on native host promoters for the construction of circuit elements, such as logic gates, can make the implementation of predictable, independently functioning circuits difficult. In contrast, T7 promoters offer a simple orthogonal expression system for u...

متن کامل

Modular, Multi-Input Transcriptional Logic Gating with Orthogonal LacI/GalR Family Chimeras

In prokaryotes, the construction of synthetic, multi-input promoters is constrained by the number of transcription factors that can simultaneously regulate a single promoter. This fundamental engineering constraint is an obstacle to synthetic biologists because it limits the computational capacity of engineered gene circuits. Here, we demonstrate that complex multi-input transcriptional logic g...

متن کامل

In silico design and in vivo implementation of yeast gene Boolean gates

In our previous computational work, we showed that gene digital circuits can be automatically designed in an electronic fashion. This demands, first, a conversion of the truth table into Boolean formulas with the Karnaugh map method and, then, the translation of the Boolean formulas into circuit schemes organized into layers of Boolean gates and Pools of signal carriers. In our framework, gene ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 13  شماره 

صفحات  -

تاریخ انتشار 2013